Article ID Journal Published Year Pages File Type
7897822 Journal of the European Ceramic Society 2018 22 Pages PDF
Abstract
Perovskite-type solid electrolyte lanthanum lithium titanate (LLTO), exhibiting high intrinsic ionic conductivity, has been attracting interests because of its potential use in all solid-state lithium-ion batteries. In this work, we prepared LLTO ceramics by solid state reaction method and studied their conductivity and dielectric properties systematically. It is found that the bulk conductivity of LLTO is several orders of magnitude higher than the grain boundary conductivity. In addition, colossal permittivity was observed in LLTO ceramics in wide frequency/temperature ranges. Two non-Debye type relaxation peaks were observed in the imaginary part of permittivity, resulting from Li+ ions motion and accumulation near interfaces of grains/grain boundaries/electrodes. It is suggested that colossal permittivity may originate from the lithium ion dipoles inside the samples and the interfacial polarization of lithium ion accumulation near the grain boundaries. These results clarify the relations among colossal permittivity, relaxation behavior and ionic conduction in solid ion conductor ceramics.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , ,