Article ID Journal Published Year Pages File Type
789796 International Journal of Refrigeration 2010 9 Pages PDF
Abstract

Effectiveness equations are developed for non-volatile falling film absorbers with solution and coolant in counter-flow. It is shown how mixture thermodynamics and film theory can be used to simplify the problem to give eigenvalue solutions for temperature and concentration profiles and how heat and mass transfer effectiveness equations can be derived from such solutions. The results indicate that the transfer process in an absorber is driven by two driving forces, i.e. the difference between bulk solution and cooling water temperatures and the initial deviation of bulk solution from its equilibrium state. Asymptotic effectiveness equations are derived for a few limiting cases to show that they approach their counterparts in single-phase heat transfer and isothermal absorption processes.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,