Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7898304 | Journal of the European Ceramic Society | 2018 | 7 Pages |
Abstract
Ice-templating is a well-established processing route for porous ceramics. Because of the structure/properties relationships, it is essential to better understand and control the solidification microstructures. Ice-templating is based on the segregation and concentration of particles by growing ice crystals. What we understand so far of the process is based on either observations by optical or X-ray imaging techniques, or on the characterization of ice-templated materials. However, in situ observations at particle-scale are still missing. Here we show that confocal microscopy can provide multiphase imaging of ice growth and the segregation and organization of particles. We illustrate the benefits of our approach with the observation of particles and pore ice in the frozen structure, the dynamic evolution of the freeze front morphology, and the impact of PVA addition on the solidification microstructures. These results prove in particular the importance of controlling both the temperature gradient and the growth rate during ice-templating.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Dmytro Dedovets, Sylvain Deville,