Article ID Journal Published Year Pages File Type
7898374 Journal of the European Ceramic Society 2018 10 Pages PDF
Abstract
The properties of ZrO2 co-stabilized by CeO2 and TiO2 ceramic bulks were investigated for potential thermal barrier coating (TBC) applications. Results showed that the (Ce0.15Tix)Zr0.85-xO7 (x = 0.05, 0.10, 0.15) compositions with single tetragonal phase were more stable than the traditional 8YSZ at 1573 K. These compositions also showed a large thermal expansion coefficient (TEC) and a high fracture toughness, which were comparable to those of YSZ. However, the phase stability, fracture toughness and sintering resistance of the CeO2-TiO2-ZrO2 system showed a decline tendency with the increase of TiO2 content. The TEC of the ceramic bulks decreased with increase of TiO2 content as well because the crystal energy was enhanced with increasing substitution of Zr4+ by smaller Ti4+. The (Ce0.15Ti0.05)Zr0.8O2 had the best comprehensive properties among the (Ce0.15Tix)Zr0.85-xO2 compositions as well as a low thermal conductivity. Therefore, it can be explored as a TBC candidate material for high-temperature applications.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , , , ,