Article ID Journal Published Year Pages File Type
7898563 Journal of the European Ceramic Society 2018 37 Pages PDF
Abstract
Calcium phosphates (CaP) have been the subject of several studies that often lack a systematic approach to understanding how their properties affect biological response. CaP particles functionalised with a pH-responsive polymer (BCS) were used to prepare microporous substrates (porosity between 70 and 75% and pore sizes of 5-20 μm) through the aggregation of oil-in-water emulsions by controlling solid loading, emulsification energy, pH, drying and sintering conditions. The combined effect of surface roughness (roughness amplitude, Ra between 0.9-1.7 μm) and chemistry (varying Hydroxyapatite/β-Tricalcium phosphate ratio) on human mesenchymal stem cells was evaluated. HA substrates stimulated higher cell adhesion and proliferation (especially with lower Ra), but cell area increased with β-TCP content. The effect of surface roughness depended of chemistry: HA promoted higher mineralising activity when Ra ∼ 1.5 μm, whereas β-TCP substrates stimulated a more osteogenic profile when Ra ∼ 1.7 μm. A novel templating method to fabricate microporous CaP substrates was developed, opening possibilities for bone substitutes with controlled features.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , ,