Article ID Journal Published Year Pages File Type
7898825 Journal of the European Ceramic Society 2018 34 Pages PDF
Abstract
Biomimetic deposition of calcium phosphates onto Al2O3-ZrO2 nanocomposites provides greater surface bioactivity, leading to the formation of biomaterials that can potentially replace and restore bone tissues. This study is aimed at evaluating the formation of different calcium phosphate phases using biomimetic coating on chemically treated and untreated surfaces of porous Al2O3-ZrO2 (5 vol%) nanocomposites at different incubation times. To this end, the porous materials fabricated by gelcasting were calcined, sintered, chemically treated or left untreated, and biomimetically coated during a period of 14-21 days. The results indicated high porosity of the nanocomposite surfaces as well as high pore interconnectivity, which favours osseointegration. Additionally, it was observed that chemical treatment may influence the amount of calcium phosphates formed on the nanocomposite surfaces as well as the minimum incubation time, favouring the formation of a particular calcium phosphate phase over the nanocomposite surface.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,