Article ID Journal Published Year Pages File Type
7899091 Journal of the European Ceramic Society 2013 13 Pages PDF
Abstract
Polycrystalline alumina, doped with MgO below the solubility limit, was reinforced with sub-micron particles of Ni by infiltration of Ni-nitrate into fired alumina green bodies, followed by reduction and sintering. The Ni particle size and location were monitored both after reduction and after sintering by transmission electron microscopy. Particle occlusion was found to increase with sintering time and temperature, and is correlated with experimentally detected Mg segregation to the Ni-alumina interfaces, resulting in partial depletion of Mg at the alumina grain boundaries and thus their increased mobility. Occlusion of Ni particles reduces the fracture strength and Weibull modulus of the composites, indicating that particle location is a key microstructural parameter for reaching high fracture strengths, and that this can be controlled via grain boundary and interface adsorption.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,