Article ID Journal Published Year Pages File Type
7899110 Journal of the European Ceramic Society 2013 7 Pages PDF
Abstract
A unique temperature dependence of toughening is observed in an alumina/zirconia dual-phase matrix composite reinforced with silicon carbide whiskers. The work of fracture (WOF) of the composite is maximized at 400 °C to 130 J/m2, which is about 6.5 times larger than that of monolithic alumina at room temperature. The WOF decreases sharply with an increase in temperature above 400 °C. The enhanced toughening at elevated temperatures is described by the stress-induced transformation toughening of tetragonal zirconia, which is affected by the internal thermal stress owing to thermoelastic mismatch between the matrix and the whiskers. The maximum WOF is not given only by the stress-induced transformation but also by the crack-face bridging of the whiskers. The WOF was optimized at a specific zirconia volume fraction of 0.7 in the matrix, which was essentially due to the maximized tensile internal stress on zirconia in the dual-phase matrix.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , ,