Article ID Journal Published Year Pages File Type
790482 International Journal of Refrigeration 2010 8 Pages PDF
Abstract

The transient heat transfer during nucleate boiling of refrigerant HFE-7100 is investigated numerically and the results are compared to experimental data. The Volume-of-Fluid solver of the OpenFOAM CFD package was modified and extended for the numerical simulation of single bubble boiling. The model tracks the bubble shape during growth, departure and vertical rise and incorporates evaporation at the liquid–vapor interface as well as microscale heat transfer at the 3-phase contact line. The simulation results give insight into the transient heat transfer between the solid wall, the superheated liquid layer and the growing vapor bubble. The boundary conditions have been chosen according to temporally and spatially highly resolved experimental investigations. Global parameters such as bubble size and mean wall superheat as well as local phenomena such as the cooling of the heater at the contact line are in good agreement to the experimental data.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,