Article ID Journal Published Year Pages File Type
790554 International Journal of Refrigeration 2009 12 Pages PDF
Abstract

New experimental data on the influence of short-tube orifice configuration, including diameter, length, length-to-diameter ratio (L/D), and orientation on the flow pattern, mass flow rate, and pressure distribution of HFC-134a inside the short-tube orifice are presented. Short-tube orifice diameters ranging between 0.605 and 1.2 mm with L/D ranging between 1.87 and 33 are used in the experiments. Three different forms of the metastable liquid flow, which are metastable liquid core flow, conical metastable liquid core flow, and full metastable liquid flow are visually observed. The short-tube orifice diameter has a significant effect on the increase in the flow rate. Conversely, the change in the orientation of the test section has no significant effect on the flow rate. The choke flow phenomenon disappears inside the short-tube orifice when L/D is less than 2.91. Based on the present data, a correlation for predicting the mass flow rate through short-tube orifices is proposed.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,