Article ID Journal Published Year Pages File Type
790569 Journal of Applied Mathematics and Mechanics 2008 14 Pages PDF
Abstract

The motion of an incompressible viscous fluid in a thin layer between two circular cylinders, inserted into one another, with parallel axes is investigated. The cylinders rotate relative to one another about an axis parallel to the axes of the cylinders. The stream function of the unsteady plane-parallel flow that occurs is found by solving the boundary-value problem for the equations of hydrodynamic lubrication theory. The motion of the fluid particles is found from the solution of a non-autonomous time-periodic Hamiltonian system with a Hamiltonian equal to the stream function. The positions of fluid particles over time intervals that are a multiple of the period of rotation (Poincaré points) are calculated. The set of points is investigated using a Poincaré mapping on the phase flow. The observed transition to chaotic motion is related to the mixing of the fluid particles and is investigated both numerically and using a mapping, calculated with an accuracy up to the third power of the small eccentricity. The optimum mode of motion is observed when the area of the mixing (chaos) region reaches its highest value.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,