Article ID Journal Published Year Pages File Type
7908465 Optical Materials 2016 6 Pages PDF
Abstract
We investigated Eu3+ and Eu2+ ion incorporation and the reduction of Eu3+ ions in a LiBaPO4 lattice using atomistic simulations based on lattice energy minimization. We predicted the most probable sites occupied by Eu3+ and Eu2+ ions, and the related charge-compensation mechanisms involved in these substitutions to the most provable reduction agent for Eu reduction. It was found that Eu3+and Eu2+ ions are the most energetically favorable for incorporation at Ba site. In the case of the Eu3+ ion, charge compensation by the LiBa′ antisite is the most provable. Eu3+ reduction involving a H2 reduction atmosphere is the most favorable. Our results reveal that Eu3+ and Eu2+ position plays an important role in the luminescence characteristic and in the persistent luminescence mechanisms related to LiBaPO4.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, ,