Article ID Journal Published Year Pages File Type
7908711 Optical Materials 2016 5 Pages PDF
Abstract
Nonequilibrium carrier dynamics in the scintillators prospective for fast timing in high energy physics and medical imaging applications was studied. The time-resolved free carrier absorption investigation was carried out to study the dynamics of nonequilibrium carriers in wide-band-gap scintillation materials: self-activated led tungstate (PbWO4, PWO) ant two garnet crystals, GAGG:Ce and YAGG:Ce. It was shown that free electrons appear in the conduction band of PWO and YAGG:Ce crystals within a sub-picosecond time scale, while the free holes in GAGG:Ce appear due to delocalization from Gd3+ ground states to the valence band within a few picoseconds after short-pulse excitation. The influence of Gd ions on the nonequilibrium carrier dynamics is discussed on the base of comparison the results of the free carrier absorption in GAGG:Ce containing gadolinium and in YAGG without Gd in the host lattice.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , , ,