Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7908942 | Optical Materials | 2015 | 5 Pages |
Abstract
Er3+/Yb3+ co-doped oxy-fluoride powders with varying Er/Yb concentration were prepared by a melt quenching method at various sintering temperature. The effect of the Er/Yb doped concentration and sintering temperature were analyzed by using optical absorption and emission techniques. The Judd-Ofelt theory has been used to evaluate the three intensity parameters (Ωλ, where λ = 2, 4 and 6) and calculate the oscillator strengths (fc). Ultraviolet-to-visible emissions were observed under the excitation of a 325 nm CW laser. It was found that the down-conversion fluorescence intensity changes with the sintering temperature and Er/Yb content ratio, the results were explained with the level transitions in Er3+/Yb3+ co-doped systems. The intensity ratios (intensity of 437 nm as reference) of the luminescence spectra that the samples sintered at various temperature are relevant to Ω6 parameter which indicates the vibration amplitude of the Er-O distance. The sintering temperature also has an influence on the intensity ratios via affecting the thermalization of the excited 4I15/2 level.
Related Topics
Physical Sciences and Engineering
Materials Science
Ceramics and Composites
Authors
Fangchao Liu, Qun Han, Tiegen Liu, Yaofei Chen, Yang Du, Yunzhi Yao,