Article ID Journal Published Year Pages File Type
791084 Journal of Materials Processing Technology 2010 6 Pages PDF
Abstract

Through-thickness shear strain distribution in cold rolled non-oriented silicon steel under different roll gap geometries and friction coefficients was analyzed by finite element method (FEM). Cold rolling textures were also investigated quantitatively to validate the calculated shear strain distribution. The results showed that both direction and magnitude of shear strain through thickness depend sensitively on the two rolling parameters. The coupling effect of roll gap geometry and friction was satisfactorily explained based on their contributions to shear strain and the involved mechanisms. A shear strain distribution diagram (SSDD), which can clearly characterize the shear strain state with roll gap geometry, friction and through-thickness position as variables, was proposed to serve as a convenient tool for through-thickness shear strain control.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,