Article ID Journal Published Year Pages File Type
79183 Solar Energy Materials and Solar Cells 2011 4 Pages PDF
Abstract

Dye-sensitized solar cells (DSCs) have been put forward as a potential low-cost alternative to the widely used silicon solar cells, which are subject to cost limitations. However, some problems need to be solved in order to enhance the efficiency of DSCs. In particular, the electron recombination occurred by the contact between the transparent conductive oxide (TCO) and a redox electrolyte is one of the main limiting factors of efficiency. Accordingly, a compact layer plays an important role in realizing highly efficient DSCs because it improves the adhesion of the TiO2 to the TCO and provides a larger contact area and more effective electron transfer by preventing electron recombination. In this work, the fabrication of a TiO2 compact layer using Ti sputter deposition and acid-treatment was investigated rather than the conventional method, which uses a TiCl4 aqueous solution. The acid-treatment of the sputtered Ti film actively oxidized the Ti particles. As a result, such a cell exhibited an additional 1.3% in total efficiency compared to the standard DSC without a compact layer. These improvements are not inferior to those obtained by the conventional fabrication method using a TiCl4 aqueous solution.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,