Article ID Journal Published Year Pages File Type
7918610 Energy Procedia 2017 14 Pages PDF
Abstract
A transition towards a 100% renewable energy (RE) power sector by 2050 is investigated for Ukraine. Simulations using an hourly resolved model define the roles of storage technologies in a least cost system configuration. Results indicate that the levelised cost of electricity will fall from a current level of 82 €/MWhe to 60 €/MWhe in 2050 through the adoption of low cost RE power generation and improvements in efficiency. If the capacity in 2050 would have been invested for the cost assumptions of 2050, the cost would be 54 €/MWhe, which can be expected for the time beyond 2050. In addition, flexibility of and stability in the power system are provided by increasing shares of energy storage solutions over time, in parallel with expected price decreases in these technologies. Total storage requirements include 0-139 GWhe of batteries, 9 GWhe of pumped hydro storage, and 0-18,840 GWhgas of gas storage for the time period. Outputs of power-to-gas begin in 2035 when renewable energy production reaches a share of 86% in the power system, increasing to a total of 13 TWhgas in 2050. A 100% RE system can be a more economical and efficient solution for Ukraine, one that is also compatible with climate change mitigation targets set out at COP21. Achieving a sustainable energy system can aid in achieving other political, economic and social goals for Ukraine, but this will require overcoming several barriers through proper planning and supportive policies.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,