Article ID Journal Published Year Pages File Type
791943 Journal of Materials Processing Technology 2006 5 Pages PDF
Abstract

In most of the existing metal cutting theories, the workpiece is assumed to be homogeneous and most continuum theories do not take into account the effect of crystallographic anisotropy that causes variations in the shear plane at the grain level and hence of the cutting force. As the depth of cut in single-point diamond turning (SPDT) is usually less than the average grain size of a polycrystalline aggregate, cutting is generally performed within a grain. At this scale, the difference in the individual grain properties cannot be integrated out and a continuum solution would be insufficient. As a result, this paper presents a power spectrum analysis of the periodic fluctuation of micro-cutting forces in SPDT of polycrystalline materials. The experimental results show that the features of the power spectra of the cutting forces can be well correlated with the change of rolling texture of the materials being cut. These findings help to explain quantitatively the fluctuation of micro-cutting forces and hence the effect of rolling texture in SPDT, which are not encountered in conventional machining.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , ,