Article ID Journal Published Year Pages File Type
791992 Journal of Materials Processing Technology 2006 6 Pages PDF
Abstract

The manufacturing of molds and dies has become more prominent as the world economy advances toward reduced lots, larger diversity of products and more importantly, reduced time for launching new products. Such requirements increased the application of new technologies – on one side looking to improve the digital integration of the process chain CAD/CAM/CNC and on the other side the introduction of the HSC technology in this process chain. However, the introduction of these technologies requires also the gathering of the necessary know-how related to the whole process, for example the application of appropriate cutting strategies, which have a direct effect on the geometrical precision, surface roughness and surface texture of the final part. This paper presents a experimental work about the relation between cutting strategies and the machining time and surface quality of the part. For that was developed a test model representing surfaces found in mold and dies; the material of the part was P20, a typical material for this application. Cutting strategies like Follow Periphery, Follow Part, Parallel Lines and Zig-Zag, were applied in the NC machining of test model and the results considering time and surface quality were compared.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,