Article ID Journal Published Year Pages File Type
7920081 Journal of Physics and Chemistry of Solids 2018 28 Pages PDF
Abstract
Using density functional theory (DFT) calculations, we have explored the effect of Ag and Cs atoms on the electronic transport properties of ASbO3 (A = K, Ag and Cs). We employed first principle calculations for investigation of electronic, optical and thermoelectric properties of ASbO3 compounds. The exchange and correlation potential (EXC) was treated by the modified Becke Johnson functional (mBJ). The optimized lattice constants and internal cell parameters were in agreement with the available experimental data. The self-consistence density of state and band-structure calculations show that Cs-d and Ag-d states remains in valence band and dominate below the Fermi level, while Sb-s/p states mainly contribute in conduction band. When Ag and Cs for K substitution take place, there is a gradual hybridization of Cs-d and Ag-d states results. Optical spectra show the main absorption peak in between 8.0 and 13.0 eV depends on the substituent nature and could be due to transition from hybridized band (Sb-d and Sb-s), below EF to free Ag and Cs-s/p/d states. Frequency-dependent refractive index, n(ω), and the extinction coefficient, k(ω), of ASbO3 were also calculated for the radiation upto 40 eV. We combined the outputs of DFT to transport theory based on Boltzmann equation to calculate the potential use of the ASbO3 as thermoelectrics. The change of the alkaline element affected both of electrical conductivity, Seebeck coefficient and thermal conductivity.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,