Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
792016 | Journal of Applied Mathematics and Mechanics | 2010 | 10 Pages |
The destabilization of the stable equilibrium of a non-conservative system under the action of an infinitesimal linear viscous friction force is considered. In the case of low friction, the necessary and sufficient conditions for stability of a system with several degrees of freedom and, as a consequence, the conditions for the existence of the destabilization effect (Ziegler's effect) are obtained. Criteria for the stability of the equilibrium of a system with two degrees of freedom, in which the friction forces take arbitrary values, are constructed. The results of the investigation are applied to the problem of the stability of a two-link mechanism on a plane, and the stability regions and Ziegler's areas are constructed in the parameoter space of the problem.