Article ID Journal Published Year Pages File Type
7920676 Journal of Physics and Chemistry of Solids 2018 7 Pages PDF
Abstract
In the present study, we performed first principles total energy calculations to explore the electronic, elastic, optical, and thermoelectric behavior of MRh2O4(M = Zn, Cd) spinel oxides. We employed Perdew-Burke-Ernzerhof-sol as well as the modified Becke and Johnson potential to compute the elastic, optoelectronic, and thermoelectric behavior of MRh2O4(M = Zn, Cd). The optical behavior was investigated by calculating the complex dielectric constant, refractive index, optical reflectivity, absorption coefficient, and optical conductivity. All of the optical parameters indicated a shift to lower energies as the atomic size increased from Zn to Cd, thereby suggesting potential applications of the spinel oxides in optoelectronic device. Moreover, the thermoelectric properties of MRh2O4(M = Zn, Cd) spinel oxides were computed in terms of the electrical conductivity (σ), Seebeck coefficient (S), thermal conductivity (k), and power factor (σS2) using the BoltzTraP code.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,