Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7921561 | Materials Chemistry and Physics | 2018 | 21 Pages |
Abstract
CuGaSe2 (CGS) is a semiconductor that has potential use as a photo electrode for solar water splitting. Its wide band gap and high absorption coefficient make it an ideal candidate for the top absorber in tandem structures. CGS can be synthesized by several techniques, being electrodeposition the most advantageous from a technical standpoint. Many reports show that electrodeposition of these films for producing the desired precursor atomic composition can be aided by using a complexing agent. However, the use of supporting electrolyte and the type of the electrolyte to improve the atomic composition in the films has never been reported. Using cyclic voltammetry, with complexing agents and deposition potentials between â0.5 and â0.9 V vs. Ag/AgCl reference electrode atomic ratios close to the ideal values ([Cu]/[Ga] = 1 and [Se]/[Cu + Ga] = 1), based on atomic composition and morphology analysis are reported in this work. From the X-ray diffraction (XRD), the as-deposited films exhibit poor crystallinity; however, the XRD patterns evidence the formation CuGaSe2 after annealing of the samples.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
A.M. Fernandez, J.A. Turner, B. Lara-Lara, T.G. Deutsch,