Article ID Journal Published Year Pages File Type
7921751 Materials Chemistry and Physics 2018 10 Pages PDF
Abstract
Novel Nb-ZrCo hydrogen permeable alloys are developed as potential membrane materials for hydrogen separation applications. Microstructures, hydrogen permeation behavior and the resistance to hydrogen embrittlement of NbxZr(95-x)/2Co(105-x)/2 (x = 15 … 40) alloys are studied. Three different microstructures are found in these alloys, particularly (a) the primary ZrCo phase and eutectic {bcc-(Nb, Zr) + B2-ZrCo} for x < 25, (b) the fully eutectic for x = 25 and (c) the primary bcc-(Nb,Zr) and eutectic for x > 25. Alloys with Nb content between 20 and 30 at.% present higher permeation results. Increase in Nb content lead to higher hydrogen permeability (Φ), but poorer embrittlement resistance, which can be attributed to an increase in hydrogen solubility. Nb25Zr35Co40 exhibits an appropriate balance between hydrogen permeability and embrittlement resistance. Permeability is improved apparently and hydrogen embrittlement resistance is also further strengthened for directionally solidified (DS) Nb25Zr35Co40, which is mainly attributed to a decrease in hydrogen solubility and the significant increment of hydrogen diffusivity. The present work demonstrates that the newly developed alloys could be used as potential candidate for hydrogen separation applications.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , ,