Article ID Journal Published Year Pages File Type
7923352 Materials Chemistry and Physics 2014 10 Pages PDF
Abstract
Novel polyurethane (PU) conducting composite thin films based on tetrahydroxyl-terminated poly(butadiene-co-acrylonitrile) (THTBN) and hydroxyl-functionalized multi-walled carbon nanotubes (MWNTs-OH), were prepared via an in-situ coupling reaction route between hydroxyl groups and isocyanate groups. The chemical and crystal structures were characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). The morphologies and the dispersion behavior of THTBN/MWNTs-OH were examined by scanning electron microscope (SEM), transmission electron microscopy (TEM) and UV-Vis measurements. The influence of MWNTs-OH loading amount on conducting properties and response to some volatile organic compounds (VOCs) especially benzene and toluene was investigated. The experimental results indicated that MWNTs-OH was tightly encapsulated by PU moieties and homogeneously dispersed in the PU moieties. The as-prepared THTBN/MWNTs-OH PU conducting thin films exhibited strong and selective response to nonpolar benzene and toluene vapors, and the response depends on the loading of MWNTs-OH and VOC vapor concentrations. The improvement in dispersity and sensing properties were closely correlated with the chemical linkage of MWNTs-OH in the THTBN matrices through bridging molecules HDI. The developed PU conducting thin films had fast response and reversibility, significant reproducibility and long-term stability. Therefore, they had a possibility as a candidate of volatile organic solvent vapor sensors.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,