Article ID Journal Published Year Pages File Type
7924428 Modern Electronic Materials 2017 26 Pages PDF
Abstract
We have considered theoretical viewpoints and reviewed experimental data on the growth and properties of metallic nanofilms (including multilayered ones) on silicon, and also provided a brief review of their applications. The films consist either of atomic-sized, quabquantum sized and quantum sized layers. We have suggested a low temperature film growth technology based on freezing growing layers during deposition by maintaining a low temperature of the substrate and using an atomic beam with a reduced heat power. The technology uses a specially shaped deposition system in which the distance between the source and the substrate is comparable to their size or smaller. Furthermore, we use a special time sequence of deposition that provides for a reduced substrate surface temperature due to greater intervals between deposition pulses. This growth method of atomically thin films and multilayered nanofilms excludes interdiffusion between the layers, reduces three-dimensional growth rate and relatively increases lateral layer growth rate.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
,