Article ID Journal Published Year Pages File Type
7924742 Optics Communications 2018 5 Pages PDF
Abstract
We propose a novel plasmonic interferometric sensor with a slit and surrounding rectangular grooves array on an optically thick gold film for biochemical sensing. We did finite-difference time-domain (FDTD) simulation for design optimization and analytical calculation for characterization of sensitivity in the proposed sensor. Our interferometer is functional for visible to near infrared region with maximum sensitivity of 500 nm/RIU and figure of merit 1933 at 741 nm wavelength. The peak intensity and wavelength change in different refractive indices. In conclusion, the results obtained in the present study indicate the potential of the proposed plasmonic interferometer as a low cost, compact, and label-free high-throughput device.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , ,