Article ID Journal Published Year Pages File Type
792479 Journal of Fluids and Structures 2010 25 Pages PDF
Abstract

Vortex-induced vibration (VIV) of long flexible cylindrical structures (e.g. risers, pipelines, tendons, mooring lines) enduring ocean currents is ubiquitous in the offshore industry. Though significant effort has gone into understanding this complicated fluid–structure interaction problem, major challenges remain in modeling and predicting the response of such structures (for example a riser). The work presented in this paper provides a systematic approach to estimate and analyze the vortex-induced motions of a marine riser. A systematic framework is developed, which allows reconstruction of the riser motion from a limited number of sensors placed along its length. A full reconstruction criterion is developed, which classifies when the measurements from the sensors contain all information pertinent to riser VIV response, and when they do not, in which case additional, analytical methods must be employed. Reconstruction methods for both scenarios are developed and applied to experimental data. Finally, a systematic study on the error during the reconstruction is also undertaken. The methods developed in this paper can be applied to: improve understanding of the vortex shedding mechanisms, including the presence of traveling waves and higher-harmonic forces; develop tools for in-situ estimation of fatigue damage on marine risers; and estimate the vortex-induced forces on marine risers.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,