| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 7925346 | Optics Communications | 2018 | 5 Pages |
Abstract
Despite the intuition that synchronization of different nodes in coupled oscillator networks results from information exchange between them, it has recently been shown that remote nodes could be partially synchronous even when they are separated by intermediately unsynchronized nodes. Here based on electro-optic system, we report on a more stronger form of such synchronization pattern that is termed as secure remote synchronization, in which two remotely separated nodes could have identically synchronized dynamical behaviors while the rest of the network are both statistically and information-theoretically incoherent relative to the two synchronized nodes. The generalized form of mirror symmetry in the network structure is identified to be a key mechanism allowing for secure remote synchronization. Moreover, this synchronization mode is robust against a wild range of system parameters and noise perturbing the intermediary dynamics. The lack of information about the synchronized dynamics in the rest of the network suggests that our results could potentially lead to network-based solutions for secure key distribution and secure communication.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Mingfeng Xu, Wei Pan, Liyue Zhang,
