Article ID Journal Published Year Pages File Type
7925891 Optics Communications 2018 6 Pages PDF
Abstract
A novel method to artificially control the backscattering of the single-mode fiber (SMF) is proposed and investigated for the first time. This method can help to fabricate a high backscattering fiber (HBSF), such as by fabricating reflectors in every one meter interval of an SMF based on the exposure of the femtosecond laser beam. The artificially controlled backscattering (ACBS) can be much higher than the natural Rayleigh backscattering (RB) of the SMF. The RB power and ACBS power in the unit length fiber are derived according to the theory of the RBS. The total relative power and the relative back power reflected in the unit length of the HBSF have been simulated and presented. The simulated results show that the HBSF has the characteristics of both low optical attenuation and high backscattering. The relative back power reflected in the unit length of the HBSF is 25dB larger than the RB power of the SMF when the refractive index modulation quantity of the reflectors is 0.009. Some preliminary experiments also indicate that the method fabricating reflectors to increase the backscattering power of the SMF is practical and promising.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,