Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7925918 | Optics Communications | 2018 | 7 Pages |
Abstract
A novel design of the 532 nm Rayleigh-Mie Doppler lidar receiving system is carried out. The use of polarization isolation technology to effectively improve the receiving system optical reception efficiency, suppress the background noise, not only improves the system wind field detection accuracy, while achieving a high-accuracy temperature measurement. The wind speed and temperature measurement principle of the system are discussed in detail, and the triple Fabry-Perot etalon parameters are optimized. Utilizing the overall design parameters of the system, the system detection performance is simulated. The simulation results show that from 5 to 50 km altitude with vertical resolution of 0.1 km@5â¼20 km, 0.5 km@20â¼40 km, 1 km@40â¼50 km, by using the laser with single pulse energy of 600 mJ, repetition frequency of 50 Hz and the receiving telescope with aperture of 0.8 m, with 2min integration time and in ±50 m/s radial wind speed range, the radial wind speed measurement accuracies of our designed lidar in the day and night are better than 2.6 m/s and 0.9 m/s respectively, and its performance is obviously superior to that of traditional system 5.6 m/s and 1.4 m/s wind speed accuracies; with 10min integration time and in 210â¼280 K temperature range, the temperature measurement accuracies of the system in the day and night are better than 3.4 K and 1.2 K respectively; since the wind speed sensitivities of the Mie and Rayleigh scattering signals are not exactly the same, in ±50 m/s radial wind speed range, the wind speed bias induced by Mie signal is less than 1 m/s in the temperature range of 210-290 K and in the backscatter ratio range of 1-1.5 for pair measurement.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Fahua Shen, Bangxin Wang, Wenjuan Shi, Peng Zhuang, Chengyun Zhu, Chenbo Xie,