Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7926364 | Optics Communications | 2018 | 5 Pages |
Abstract
Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Masahiko Shiraishi, Michiko Nishiyama, Kazuhiro Watanabe, Shoichi Kubodera,