Article ID Journal Published Year Pages File Type
792651 Journal of Fluids and Structures 2009 15 Pages PDF
Abstract

Self-twisting composite marine propellers, when subject to hydrodynamic loading, will not only automatically bend but also twist due to passive bend–twist (BT) coupling characteristics of anisotropic composites. To exploit the BT coupling effects of self-twisting propellers, a two-level (material and geometry) design methodology is proposed, formulated, and implemented. The material design is formulated as a constrained, discrete, binary optimization problem, which is tackled using an enhanced genetic algorithm equipped with numerical and analytical tools as function evaluators. The geometry design is formulated as an inverse problem to determine the unloaded geometry, which is solved using an over-relaxed, nonlinear, iterative procedure. A sample design is provided to illustrate the design methodology, and the predicted performance is compared to that of a rigid propeller. The results show that the self-twisting propeller produced the same performance as the rigid propeller at the design flow condition, and it produced better performance than the rigid propeller at off-design flow conditions, including behind a spatially varying wake.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,