Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7926812 | Optics Communications | 2017 | 6 Pages |
Abstract
In this paper, we proposed a novel peak to average power ratio (PAPR) reduction scheme for the asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) visible light communications system. We implement the Toeplitz matrix based Gaussian blur method to reduce the high PAPR of ACO-OFDM at the transmitter and use the orthogonal matching pursuit algorithm to recover the original ACO-OFDM frame at the receiver. Simulation results show that for the 256-subcarrier ACO-OFDM system a ~6Â dB improvement in PAPR is achieved compared with the original ACO-OFDM in term of the complementary cumulative distribution function, while maintaining a competitive bit-error rate performance compared with the ideal ACO-OFDM lower bound. We also demonstrated the optimal parameter C of 2 for the recovery algorithm based on the tradeoff between the data rate and recovery accuracy. The recovery results show that using the proposed scheme the ACO-OFDM can faithfully be reconstructed judging by the very low value for the reconstruct error of 0.06.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Tian zhang, Zabih Ghassemlooy, Chunyang Ma, Shuxu Guo,