Article ID Journal Published Year Pages File Type
7926940 Optics Communications 2017 13 Pages PDF
Abstract
The self-organized lightwave network (SOLNET) provides “optical solder,” which enables self-aligned optical couplings between misaligned optical devices with different core sizes. We propose a low-cost SOLNET formation method, in which write beams are generated within optical devices by excitation lights from outside. Simulations based on the finite-difference time-domain method reveal that the two-photon processes enhance optical-solder capabilities. In couplings between 600-nm-wide waveguides opposed with 32-μm distance a wide lateral misalignment tolerance of ~2 µm to maintain <1 dB loss at 650 nm in wavelength is obtained. The coupling loss at 1-μm lateral misalignment is 0.4 dB. In couplings between 3-μm-wide and 600-nm-wide waveguides, losses at 650 nm are 0.1 dB for no misalignments and 0.9 dB for 1-μm misalignment. These results suggest that SOLNETs provide optical solder with mode size converting functions.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,