Article ID Journal Published Year Pages File Type
792695 Journal of Fluids and Structures 2007 27 Pages PDF
Abstract

This paper presents an experimental study of the acoustical effects of cavitation caused by a water flow through an orifice. A circular-centered single-hole orifice and a multi-hole orifice are tested. Experiments are performed under industrial conditions: the pressure drop across the orifice varies from 3 to 30 bar, corresponding to cavitation numbers from 0.74 to 0.03. Two regimes of cavitation are discerned. In each regime, the broadband noise spectra obtained far downstream of the orifice are presented. A nondimensional representation is proposed: in the intermediate ‘developed cavitation’ regime, spectra collapse reasonably well; in the more intense ‘super cavitation’ regime, spectra depend strongly on the quantity of air remaining in the water downstream of the orifice, which is revealed by the measure of the speed of sound at the downstream transducers. In the ‘developed cavitation’ regime, whistling associated with periodic vortex shedding is observed. The corresponding Strouhal number agrees reasonably well with literature for single-phase flows. In the 'super cavitation’ regime, the whistling disappears.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,