Article ID Journal Published Year Pages File Type
792703 Journal of Fluids and Structures 2007 9 Pages PDF
Abstract

The influence of swirl (flow rotation) on the stability of a rod in annular leakage flow is investigated. Under the assumption of laminar flow and plane vibrations (no whirling), it is shown that the swirl acts, in effect, as an elastic foundation with negative foundation stiffness, the magnitude being proportional to the mean circumferential flow rate squared. Consequently, swirl always lowers the critical axial flow speed in case of divergence instability of a rod of finite length. Numerical analysis is needed to predict the effect of swirl in case of flutter instability of a finite rod; this is not performed here. However, for the flutter-like instability of travelling waves in an infinite rod-channel system, it is shown analytically that swirl again always lowers the critical axial flow speed. Finally, it is found that by circumferential flow alone, the travelling waves are extinguished at a certain flow rate, followed by a divergence-like instability.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,