Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7927835 | Optics Communications | 2016 | 9 Pages |
Abstract
To meet the uniform dose exposure in optical lithography, it is desirable to get uniform illumination in the scanning direction on wafer for the step-and-scan lithographic system. We present a flat Gauss illumination for the step-and-scan lithographic system in this paper. Through flat Gauss illumination in scanning direction, pulse quantization effect could be reduced effectively. Correspondingly, the uniformity of the reticle and wafer is improved. Compared with the trapezoid illumination, flat Gauss illumination could keep the slit edge fixed, and pulse quantization effect will not be enhanced. Moreover flat Gauss illumination could be obtained directly without defocusing and blocking, which results in high energy efficiency and high throughput of the lithography. A design strategy for flat Gauss illumination is also proposed which offers high uniformity illumination, fixed slope and integral energy of flat Gauss illumination in different coherence factors. The strategy describes a light uniform device which contains first microlens array, second microlens array, one-dimensional Gauss diffuser and a Fourier lens. The device produces flat Gauss illumination directly at the scanning slit. The design and simulation results show that the uniformity of flat Gauss illumination in two directions satisfy the requirements of lithographic illumination system and the slope. In addition, slit edge of flat Gauss illumination does not change.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Ming Chen, Ying Wang, Aijun Zeng, Jing Zhu, Baoxi Yang, Huijie Huang,