Article ID Journal Published Year Pages File Type
7928780 Optics Communications 2016 8 Pages PDF
Abstract
Grating assisted surface plasmon resonance waveguide grating has been designed and optimized for the sensing application. Adaptive particle swarm optimization in conjunction with derivative free method for mode computation has been used for design optimization of LPWG sensor. Effect of metal thickness and cladding layer thickness on the core mode and surface plasmon mode has been analyzed in detail. Results have been utilized as benchmarks for deciding the bounds of these variables in the optimization process. Two waveguides structures have been demonstrated for the grating assisted surface plasmon resonance refractive index sensor. The sensitivity of the designed sensors has been achieved 3.5×104 nm/RIU and 5.0×104 nm/RIU with optimized waveguide and grating parameters.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,