Article ID Journal Published Year Pages File Type
7930041 Optics Communications 2015 6 Pages PDF
Abstract
We propose and demonstrate a trapped yeast cell being launched away from the fiber tip with a certain speed to a certain position without moving the optical fiber in a single fiber optical trapping apparatus. We excite both LP01 and LP11 mode beams in a same normal communication fiber core to generate the optical launching force and trapping force by molding the fiber tip into a special tapered-tip shape. A yeast cell of 6 μm diameter is trapped and then being launched away. We construct the optical trapping and launching potential wells by controlling the power of two mode beams. Besides that, we also build a physical model to analyze the micro-particle dynamic behavior characteristics during the launching process. This micro-particle directional launching function expands new features of fiber optical tweezers based on the normal communication fiber, providing for the possibility of more practical applications in the biomedical research fields.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,