Article ID Journal Published Year Pages File Type
7930670 Optics Communications 2014 8 Pages PDF
Abstract
A novel theoretical model of a circular polarization shift keying (CPolSK) system for free space optical links through an atmospheric turbulence channel, is proposed. Intensity scintillation and phase fluctuation induced in atmospheric turbulence, from weak to strong levels, are specifically researched with respect to circular polarization control error caused by the system design. We derive closed form expressions of the bit error rate (BER) and outage probability for evaluating the BER performance and communication interruption in the Gamma-Gamma distributed channel model. Simulation results show that atmospheric turbulence and circular polarization control error have significant effects on the BER performance and interruption of communication in the CPolSK system. The deterioration in BER performance, caused by intensity scintillation and phase fluctuation, is augmented by the power penalty conditioned by the circular polarization control error. This consequently adds to the demand for emissive power from the CPolSK system. Furthermore, we demonstrate that controlling the circular polarization control error below 8° as well as the normalized threshold within 8 dB, 9 dB and 10 dB in turbulent scenarios from weak to strong levels can significantly reduce the probability of communication interruption occurring. This study provides reference material for further design of the CPolSK system.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,