Article ID Journal Published Year Pages File Type
7931861 Optics Communications 2014 4 Pages PDF
Abstract
The advantages of GaN based light-emitting diodes (LEDs) with strain-compensated p-AlGaN/InGaN superlattice (SL) last quantum barrier (LQB) are investigated numerically. The simulation results indicate that the output power and internal quantum efficiency have been improved significantly by replacing the last barrier of the conventional u-GaN and p-GaN with p-AlGaN/InGaN SL. These improvements are mainly attributed to the improvement of electron confinement and hole injection efficiency caused by mitigating the polarization-induced band bending of last barrier with the new designed structure. Moreover, the efficiency droop of the LEDs is markedly improved by using p-AlGaN/InGaN SL as last barrier.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , , ,