Article ID Journal Published Year Pages File Type
793266 Journal of Materials Processing Technology 2009 11 Pages PDF
Abstract

Micro milling utilizes miniature micro end mills to fabricate complexly sculpted shapes at high rotational speeds. One of the challenges in micro machining is regenerative chatter, which is an unstable vibration that can cause severe tool wear and breakage, especially in the micro scale. In order to predict chatter stability, the tool tip dynamics and cutting coefficients are required. However, in micro milling, the elasto-plastic nature of micro machining operations results in large process damping in the machining process, which affects the chatter. We have used the equivalent volume interface between the tool and the workpiece to determine the process damping parameter. Furthermore, the accurate measurement of the tool tip dynamics is not possible through direct impact hammer testing. The dynamics at the tool tip is indirectly obtained by employing the receptance coupling method, and the mechanistic cutting coefficients are obtained from experimental cutting tests. Chatter stability experiments have been performed to examine the proposed chatter stability model in micro milling.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , ,