Article ID Journal Published Year Pages File Type
7932894 Photonics and Nanostructures - Fundamentals and Applications 2015 10 Pages PDF
Abstract
A method in terms of bandwidth and gain enhancement is presented for optically transparent coplanar waveguide fed (CPW-Fed) antenna, which supports unlicensed 60 GHz band (57-66 GHz) applications. The original antenna and mesh antenna in [8] were designed on a transparent material that is made of a 0.2-mm-thick fused silica 7980 Corning substrate (ɛr: 3.8 and tan δ: 0.0001). However, the peak gains of −5.3 and −5.4 dBi at 60 GHz of those antennas can be further improved. Thus, in this paper, a novel bidirectional symmetric I-shaped slot uniplanar compact electromagnetic band-gap (BSIS-UC-EBG) structure with a reflection phase band of 58.0-62.1 GHz is proposed to improve antenna performance. Based on this BSIS-UC-EBG structure, both transparent BSIS-UC-EBG antenna and transparent mesh BSIS-UC-EBG antenna with enhanced properties are presented and discussed. The analysis results show that the impedance bandwidth (the peak gain) of transparent BSIS-UC-EBG antenna and transparent mesh BSIS-UC-EBG antenna are enhanced to 36.6% (4.7 dBi) and 44.7% (5.8 dBi), respectively. In addition, we also discuss the comparison of radiation patterns at 60 GHz, and the results illustrate that the radiation patterns are basically identical.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,