Article ID Journal Published Year Pages File Type
79332 Solar Energy Materials and Solar Cells 2010 5 Pages PDF
Abstract

Structural and optical properties of germanium thin films deposited on silicon nitride coated glass are investigated with the aim to develop a material for the bottom cells of low cost monolithic tandem solar cells. The films were deposited by radio-frequency magnetron sputtering at various substrate temperatures (Ts)≤450 °C. X-ray diffraction spectra reveal the structural evolution from amorphous to crystalline phase with increasing Ts We find that the film sputtered at 450 °C is poly-crystalline with strong (1 1 1) preferential orientation, confirmed by cross-sectional transmission electron microscopy. Optical band gaps of these films derived from Tauc plots, using absorption coefficient values derived from both reflectance/transmittance measurements and spectroscopic ellipsometry data, are in a reasonable agreement. Optical band gap values decrease from ∼0.88 to 0.68 eV over the transition from the amorphous to poly-crystalline phase. The absorption coefficient of the poly-crystalline Ge film is higher than that of bulk Ge over a wide waveband and exhibits an absorption tail. The optical properties upon substrate temperature are correlated with the structural properties of Ge films.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,