Article ID Journal Published Year Pages File Type
793331 Journal of Materials Processing Technology 2009 11 Pages PDF
Abstract

In this paper, computational modelling of 3D turning process in the presence of variable design cutting tool inserts is studied. Turning of alloy steel, AISI 4340, which utilized in high strength mechanical components for automotive and aerospace industry steel with uniform and variable edge design Polycrystalline cubic Boron Nitride (PcBN) inserts is performed. In the experiments chip geometry, forces and tool wear are measured. 3D computational modelling is utilized to predict chip formation, forces, stresses, temperatures and tool wear on uniform and variable edge design tools. Influence of variable edge tooling on resultant pressure-dependent friction has been investigated by utilizing 3D process simulations. Predicted forces are compared with experiments until pressure-dependent shear friction factor is solved. In general, a lower friction concentration is found for variable edge tooling. The temperature and stress distributions and tool wear contours reveal the advantages of variable edge micro-geometry design.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
,