Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
7933387 | Physica E: Low-dimensional Systems and Nanostructures | 2018 | 25 Pages |
Abstract
Thermoelectric effect for metal, insulator and the superconductor junctions has been studied with Rashba spin-orbit coupling (RSOC) being present at the interfaces via modified Blonder-Tinkham-Klapwijk (BTK) theory. We find that the thermopower, as a function of an effective barrier potential that characterizes the intermediate insulating layer, displays an oscillatory behavior. Interesting interplay between the strength of RSOC and the effective barrier potential has been carried out in details in this regard. For specific ranges of the effective barrier potential, RSOC enhances the thermopower, while the reverse happens for other values. Moreover it is found that the effective barrier potential plays a crucial role in determining the thermopower spectrum. For a tunable Rashba coupling, the thermopower of the junction can be controlled with precision, which may useful for the thermoelectric applications, at low temperatures. Further the efficiency of the system is obtained for different pairing correlations of the superconducting lead where we find that the system with a d-wave symmetry is more efficient as compared to a s-wave correlation, in some selective regions of effective barrier potential. It is found that for some selective regions of effective barrier potential, the efficiency of the system increases with RSOC and the opposite happens for other values.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Priyadarshini Kapri, Priyanka Adhikary, Shubham Sinha, Saurabh Basu,