Article ID Journal Published Year Pages File Type
793342 Journal of Fluids and Structures 2015 20 Pages PDF
Abstract

•We propose an analytical model for elastic coating to water blast.•Taylor׳s method is a trivial case of the analytical model.•We reveal the elastic effect of coating on water blast (regime behavior).•Breaking front cannot propagate toward the wet face when we study elastic coating.•The radiated wave by closing front may be negative and cavitate water again.

In previous studies, the response of sandwich structures to water blast is solved by envisaging the plate adjacent to water as a rigid one, while the effects of the elasticity in the longitudinal direction of the plate are rarely studied. In this paper, a monolithic elastic coating with varying stiffness and thickness is investigated by a one-dimensional analytical approach, based on linear wave motion theory, to reveal the elastic effect of the plate on the incident wave. One side of the coating is loaded by a planar shock wave; on the opposite side, rigid boundary or air-backed boundary is imposed. The fluid–structure interaction (FSI), cavitation phenomenon and large deformation of the coating are taken into account. In particular, the initiation and evolution of cavitation, including the propagations of breaking fronts and closing fronts, as well as the pressure histories of radiated wave by the closing front, are examined. The analytical solution has been compared with finite element (FE) predictions. The results are found to be in excellent agreement for the propagation of breaking front and closing front, as well as the pressure and particle velocity histories at the wet face before the cavitation reaches the wet face. However, when the wet face cavitates, the predictions provided by the analytical method are less accurate and the analytically-computed particle velocity can only be compared in an average sense with the FE predictions. For air-backed case, Taylor׳s model prior to cavitation becomes a trivial case of the analytical model and the comparison also indicates the validity of the analytical model. The validated analytical model is used to determine the dependence of the peak pressure at the wet face and the impulse transmitted to the coating on the coating properties, including the wave impedance and thickness.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , ,