Article ID Journal Published Year Pages File Type
7933683 Physica E: Low-dimensional Systems and Nanostructures 2018 5 Pages PDF
Abstract
By performing first-principles calculations, we explored the origin and controlling methods of magnetism in ideal and oxygen deficient (001) LaAlO3/SrTiO3 (LAO/STO) heterostructures. It was found that the ferromagnetic ordering is the ground state and that the interfacial Ti 3d electrons introduced by the LaO-termination, polar catastrophe and oxygen vacancies can all contribute to the magnetism. With respect to the ways of tuning the magnetic properties, our results show that LaO-terminated films generally carry much stronger magnetic moments than their AlO2-terminated counterparts and that the magnitude of magnetic moments can also be effectively controlled by the LAO film thickness. In addition, oxygen vacancy leads to substantial electronic reconstruction of the interfacial Ti 3d orbitals, which enhances the magnetization and makes the magnetism emerge in thinner polar LAO films. This work offers useful information to facilitate one's understanding of the magnetism and to provide clues to engineer the magnetic behaviors in related oxide heterostructures.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , ,