Article ID Journal Published Year Pages File Type
793410 Journal of the Mechanics and Physics of Solids 2011 16 Pages PDF
Abstract

Oxide films that form to protect (passivate) metal substrates from corrosive environments can be severely damaged when they are subjected to sufficient levels of electric potential. A continuum mechanics model is presented that captures the intimate electromechanical coupling of the environment and the film responsible for either growth or dissolution of the oxide. Analytical solutions, obtained for a finite-thick film experiencing a uniform electric field, illustrate the existence of a critical combination of electric field strength, initial film thickness and shape, beyond which the passivating oxide can become thin enough to undergo dielectric breakdown, or the substrate can become exposed to the corrosive environment. An experimental procedure is proposed to measure combinations of material properties required by the theoretical model to predict the lifetime of the oxide or to avoid the critical state. Illustrative numerical examples are provided to describe the morphological evolution of oxide films with a periodically wavy surface.

Keywords
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,